
BST 261: Data Science II

Lecture 14

Attention Models, Transformers

Santiago Romero Brufau

Harvard T.H. Chan School of Public Health

Spring 2

Administrivia

Today: Transformers

Wednesday 3rd: AI Safety, guest lecture by Max Nadeau, Deputy Director,
Harvard AI Safety Team

Friday 5th: Lab 5, RNNs

Next Monday 8th: Lecture over Zoom! (guest lecture by Sandeep Konam,
CTO/Founder at Abridge)

Next Wednesday 10th: Lecture over Zoom! (student presentations,
game/exam)

2

3

Attention

https://youtu.be/kCc8FmEb1nY

https://youtu.be/kCc8FmEb1nY

4

5

6

7

8

9

10

11

12

13

14

15

16

Remember embeddings are based on which words typically appear together.

So, computing the “similarity” between two words is actually estimating how
“related” they are, in the sense of how often they tend to appear with similar
words.

17

18

That “similarity matrix” now includes information about the relationship
between different words.

19

20

21

22

Transformers

Recall

Problems with RNNs (even LSTM and GRU layers)

◎ Loss of information (very long sequences)
◎ Vanishing gradient problem
◎ No parallel computing

○ Values calculated at the end depend on all previous calculations in all
previous time steps

○ Very computationally expensive

23

Recall

Problems with RNNs (even LSTM and GRU layers)

◎ Loss of information (very long sequences)
◎ Vanishing gradient problem
◎ No parallel computing

○ Values calculated at the end depend on all previous calculations in all
previous time steps

○ Very computationally expensive

24

Attention helps with these

Recall

Problems with RNNs (even LSTM and GRU layers)

◎ Loss of information (very long sequences)
◎ Vanishing gradient problem
◎ No parallel computing

○ Values calculated at the end depend on all previous calculations in all
previous time steps

○ Very computationally expensive

Transformers to the rescue!

25

Transformers

◎ Solve all of the problems with
classic RNNs
○ Allow for parallel computing
○ Use attention

◉ Helps with loss of information
problem

◎ Attention is all you need paper
○ December 2017
○ Huge breakthrough in NLP

26

https://arxiv.org/pdf/1706.03762.pdf

Transformers

◎ Solve all of the problems with
classic RNNs
○ Allow for parallel computing
○ Use attention

◉ Helps with loss of information
problem

◎ Attention is all you need paper
○ December 2017
○ Huge breakthrough in NLP

27

Encoder

Decoder

https://arxiv.org/pdf/1706.03762.pdf

Multi-Head Attention

Main idea: self-attention, multiple times

◎ Improves performance of the self-attention layer
○ Expands the model’s ability to focus on different positions in the input

sequence
○ Gives the attention layer multiple “representation subspaces”

◉ Multiple sets of query, key, and value matrices

28

Multi-Head Attention

29

Multi-Head Attention

30

Self-attention 2-head Self-attention 8-head Self-attention

Transformers

◎ State of the art models
○ GPT-2, GPT-3
○ BERT
○ T5

31

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://openai.com/blog/gpt-3-apps/
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1910.10683.pdf

Transformers

◎ Consist of “transformer blocks”
○ There are encoder and decoder transformer

blocks
◉ 6 layers each in the original paper

○ Each encoder block contains a self-attention
layer and a dense (feedforward) network

○ Each decoder block contains a self-attention
layer, an encoder-decoder attention layer,
and a dense (feedforward) network

32All depictions from this amazing post

http://jalammar.github.io/illustrated-transformer/

Encoder Block

33

Self-Attention

◎ Self-attention is attention that takes place in one block - rather than
between an encoder and decoder

◎ Uses the input to learn context and identify important words

34

Self-Attention

Steps

1. Create 3 vectors from the
embedding vector of each
word in the input sequence -
query, keys, and values
vectors.

◎ These are created by
multiplying the embedding
vector by the query, keys,
and values matrices that are
trained during the training
process

35

Self-Attention

2. Calculate a score for each word

◎ Dot product of the query and key
vectors

◎ Determines which other words in
the input sequence to focus on

3. Divide scores by √dk (dk is the dimension of
the key vector)

◎ Leads to more stable gradients

4. Pass the result through a softmax operation

36

Self-Attention

5. Multiple each value vector by the
softmax score

◎ Keeps the values of important
words intact and minimizes the
values of non-informative
words (words you can ignore)

6. Sum the weighted value vectors

◎ This is the self-attention output

37

Positional Encoding

◎ Accounts for the ordering of the words in the input sequence
◎ A vector is added to the embedding vector

○ Model learns the position of the word in the sequence, as well as the
distance between different words in the sequence

38

The Decoder

◎ The inner workings of the decoder are very similar to the encoder
○ Extra layer: “encoder-decoder attention” layer where the encoder sends information to the decoder

to help with attention and prediction
◉ Creates its query matrix from the layer below
◉ Takes the keys and values matrices from the output of the encoder

○ Self-attention within the decoder blocks is a little different
◉ Only allowed to attend to earlier positions in the output sequence

39

The Final Layer

◎ The decoder outputs a vector
that is transformed into a larger
vector by a dense (linear)
network
○ Output is called a logits vector
○ Each cell is the score of a

particular word

◎ Pass the logits vector through a
softmax function to get
probabilities for each word

◎ The cell with the highest
probability is chosen

40

Text Generation API

You can play with text generation with this API

41

https://huggingface.co/distilgpt2

42

Reinforcement
Learning

Reinforcement Learning (RL)

◎ A subfield of AI that provides tools to optimize sequences of decisions
for long-term outcomes

◎ Reinforcement learning is learning what to do—how to map situations to
actions—so as to maximize a numerical reward signal

◎ The learner is not told which actions to take, but instead must discover
which actions yield the most reward by trying them
○ Lots of interacting with environment
○ Lots of trial and error
○ A decision will affect not only the next action, but actions after that as well

43

RL

◎ Framework
○ Trial and error search, and delayed reward
○ Input: sequences of interactions (called histories) between the decision

maker and their environment
○ At every decision point, the RL algorithm chooses an action according to its

policy and receives new observations and immediate outcomes (often called
rewards)

44

RL

◎ Has been really popular with
games
○ AlphaGo is better than the

best Go players in the world

45

RL in Healthcare

◎ Still a recent method being applied in healthcare contexts

◎ Examples
○ Optimizing antiretroviral therapy in HIV
○ Tailoring antiepilepsy drugs for seizure control
○ Determining the best approach to managing sepsis

◎ Rather than a one-time prediction, RL affects a patient’s future health
and future treatment options
○ Long-term effects are more difficult to estimate

https://www.nature.com/articles/s41591-018-0310-5

https://towardsdatascience.com/a-review-of-recent-reinforcment-learning-applications-to-healthcare-1f8357600407
46

https://www.nature.com/articles/s41591-018-0310-5
https://towardsdatascience.com/a-review-of-recent-reinforcment-learning-applications-to-healthcare-1f8357600407

Sepsis Example

◎ There is wide variability in the way clinicians make decisions about sepsis
management
○ Can RL help with this?

◎ History: may include a patient’s vital signs and laboratory tests

◎ Actions: all the treatments available to the clinician, including medications and
interventions

◎ Rewards: require clinician input - they should represent the achievement of
desirable tasks, such as stabilization of vital signs or survival at the end of the stay
○ Short-term: liberation from mechanical ventilation
○ Long-term: prevention of permanent organ damage
○ https://arxiv.org/pdf/1711.09602.pdf 47

https://arxiv.org/pdf/1711.09602.pdf

48

49

Challenges

◎ We only observe one set of actions and rewards for each patient
○ We can’t keep trying different combinations of actions to optimize a reward -

forced to use previous observational data, called “off-policy” learning

◎ We don’t observe everything going on in the body
○ We also don’t observe the values we do record (blood pressure, etc.) at every

time step (dynamic data)

◎ It’s difficult to find a reward function
○ How do we balance short and long-term rewards?

◎ Need a ton of data, which is difficult to come by

Questions to Consider

◎ Is the AI given access to all variables that influence decision making?
○ Typically no because of confounding variables
○ Can lead to confounding in the short term and long term

◎ How big is your effective sample size?
○ Most approaches for evaluating RL policies from observational data weigh each

patient’s history on the basis of whether the clinician decisions match the decisions of
the policy proposed by the RL algorithm

○ The reliability (variance) of the treatment-quality estimate depends on the number of
patient histories for which the proposed and observed treatment policies agree—a
quantity known as the effective sample size

○ The possibilities for mismatch between the actual decision and the proposed decision
grow with the number of decisions in the patient’s history, and thus RL evaluation is
especially prone to having small effective sample sizes 50

51

Questions to Consider

◎ Will the AI behave prospectively as intended?
○ Errors in problem formulation or data processing can lead to poor decisions

○ Simplistic reward functions may neglect long-term effects for meaningless
gains: for example, rewarding only blood pressure targets may result in an AI
that causes long-term harm by excessive dosing of vasopressors

○ Errors in data recording or preprocessing may introduce errors in the reward
signal, misleading the RL algorithm

○ The learned policy may not work well at a different hospital or even in the
same hospital a year later if treatment standards shift

52

RL in Medicine

◎ RL in medicine seems promising, but
very difficult

◎ May help guide clinicians in treatment
decisions based on all of a patient’s
history and not their immediate
symptoms/responses to treatment

◎ Really nice review paper of RL in
medicine

53

https://arxiv.org/pdf/1908.08796.pdf
https://arxiv.org/pdf/1908.08796.pdf

	Slide 1: BST 261: Data Science II Lecture 14 Attention Models, Transformers Santiago Romero Brufau Harvard T.H. Chan School of Public Health Spring 2
	Slide 2: Administrivia
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Recall
	Slide 24: Recall
	Slide 25: Recall
	Slide 26: Transformers
	Slide 27: Transformers
	Slide 28: Multi-Head Attention
	Slide 29: Multi-Head Attention
	Slide 30: Multi-Head Attention
	Slide 31: Transformers
	Slide 32: Transformers
	Slide 33: Encoder Block
	Slide 34: Self-Attention
	Slide 35: Self-Attention
	Slide 36: Self-Attention
	Slide 37: Self-Attention
	Slide 38: Positional Encoding
	Slide 39: The Decoder
	Slide 40: The Final Layer
	Slide 41: Text Generation API
	Slide 42
	Slide 43: Reinforcement Learning (RL)
	Slide 44: RL
	Slide 45: RL
	Slide 46: RL in Healthcare
	Slide 47: Sepsis Example
	Slide 48
	Slide 49: Challenges
	Slide 50: Questions to Consider
	Slide 51
	Slide 52: Questions to Consider
	Slide 53: RL in Medicine

