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Administrivia

Today: Transformers

Wednesday 3rd: AI Safety, guest lecture by Max Nadeau, Deputy Director, 
Harvard AI Safety Team

Friday 5th: Lab 5, RNNs

Next Monday 8th: Lecture over Zoom! (guest lecture by Sandeep Konam, 
CTO/Founder at Abridge)

Next Wednesday 10th: Lecture over Zoom! (student presentations, 
game/exam)
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Attention

https://youtu.be/kCc8FmEb1nY

https://youtu.be/kCc8FmEb1nY
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Remember embeddings are based on which words typically appear together.

So, computing the “similarity” between two words is actually estimating how 
“related” they are, in the sense of how often they tend to appear with similar 
words.
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That “similarity matrix” now includes information about the relationship 
between different words.
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Transformers



Recall

Problems with RNNs (even LSTM and GRU layers)

◎ Loss of information (very long sequences)
◎ Vanishing gradient problem
◎ No parallel computing

○ Values calculated at the end depend on all previous calculations in all 
previous time steps

○ Very computationally expensive
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Attention helps with these



Recall

Problems with RNNs (even LSTM and GRU layers)

◎ Loss of information (very long sequences)
◎ Vanishing gradient problem
◎ No parallel computing

○ Values calculated at the end depend on all previous calculations in all 
previous time steps

○ Very computationally expensive

Transformers to the rescue! 
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Transformers

◎ Solve all of the problems with 
classic RNNs
○ Allow for parallel computing
○ Use attention

◉ Helps with loss of information 
problem

◎ Attention is all you need paper
○ December 2017
○ Huge breakthrough in NLP
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https://arxiv.org/pdf/1706.03762.pdf
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Encoder

Decoder

https://arxiv.org/pdf/1706.03762.pdf


Multi-Head Attention

Main idea: self-attention, multiple times

◎ Improves performance of the self-attention layer
○ Expands the model’s ability to focus on different positions in the input 

sequence
○ Gives the attention layer multiple “representation subspaces”

◉ Multiple sets of query, key, and value matrices
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Multi-Head Attention
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Multi-Head Attention
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Self-attention 2-head Self-attention 8-head Self-attention



Transformers

◎ State of the art models
○ GPT-2, GPT-3
○ BERT
○ T5
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https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://openai.com/blog/gpt-3-apps/
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1910.10683.pdf


Transformers

◎ Consist of “transformer blocks”
○ There are encoder and decoder transformer 

blocks
◉ 6 layers each in the original paper

○ Each encoder block contains a self-attention 
layer and a dense (feedforward) network

○ Each decoder block contains a self-attention 
layer, an encoder-decoder attention layer, 
and a dense (feedforward) network

32All depictions from this amazing post

http://jalammar.github.io/illustrated-transformer/


Encoder Block
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Self-Attention

◎ Self-attention is attention that takes place in one block - rather than 
between an encoder and decoder

◎ Uses the input to learn context and identify important words
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Self-Attention

Steps

1. Create 3 vectors from the 
embedding vector of each 
word in the input sequence -
query, keys, and values 
vectors. 

◎ These are created by 
multiplying the embedding 
vector by the query, keys, 
and values matrices that are 
trained during the training 
process
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Self-Attention

2. Calculate a score for each word

◎ Dot product of the query and key 
vectors 

◎ Determines which other words in 
the input sequence to focus on

3. Divide scores by √dk (dk is the dimension of 
the key vector)

◎ Leads to more stable gradients

4. Pass the result through a softmax operation
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Self-Attention

5. Multiple each value vector by the 
softmax score

◎ Keeps the values of important 
words intact and minimizes the 
values of non-informative 
words (words you can ignore)

6. Sum the weighted value vectors 

◎ This is the self-attention output

37



Positional Encoding

◎ Accounts for the ordering of the words in the input sequence
◎ A vector is added to the embedding vector 

○ Model learns the position of the word in the sequence, as well as the 
distance between different words in the sequence
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The Decoder

◎ The inner workings of the decoder are very similar to the encoder
○ Extra layer: “encoder-decoder attention” layer where the encoder sends information to the decoder 

to help with attention and prediction
◉ Creates its query matrix from the layer below
◉ Takes the keys and values matrices from the output of the encoder

○ Self-attention within the decoder blocks is a little different
◉ Only allowed to attend to earlier positions in the output sequence
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The Final Layer

◎ The decoder outputs a vector 
that is transformed into a larger 
vector by a dense (linear) 
network
○ Output is called a logits vector
○ Each cell is the score of a 

particular word

◎ Pass the logits vector through a 
softmax function to get 
probabilities for each word

◎ The cell with the highest 
probability is chosen
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Text Generation API

You can play with text generation with this API
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https://huggingface.co/distilgpt2
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Reinforcement 
Learning



Reinforcement Learning (RL)

◎ A subfield of AI that provides tools to optimize sequences of decisions
for long-term outcomes

◎ Reinforcement learning is learning what to do—how to map situations to 
actions—so as to maximize a numerical reward signal

◎ The learner is not told which actions to take, but instead must discover 
which actions yield the most reward by trying them
○ Lots of interacting with environment
○ Lots of trial and error
○ A decision will affect not only the next action, but actions after that as well
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RL

◎ Framework
○ Trial and error search, and delayed reward
○ Input: sequences of interactions (called histories) between the decision 

maker and their environment
○ At every decision point, the RL algorithm chooses an action according to its 

policy and receives new observations and immediate outcomes (often called 
rewards)
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RL

◎ Has been really popular with 
games
○ AlphaGo is better than the 

best Go players in the world
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RL in Healthcare

◎ Still a recent method being applied in healthcare contexts

◎ Examples
○ Optimizing antiretroviral therapy in HIV
○ Tailoring antiepilepsy drugs for seizure control
○ Determining the best approach to managing sepsis

◎ Rather than a one-time prediction, RL affects a patient’s future health 
and future treatment options
○ Long-term effects are more difficult to estimate

https://www.nature.com/articles/s41591-018-0310-5

https://towardsdatascience.com/a-review-of-recent-reinforcment-learning-applications-to-healthcare-1f8357600407
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https://www.nature.com/articles/s41591-018-0310-5
https://towardsdatascience.com/a-review-of-recent-reinforcment-learning-applications-to-healthcare-1f8357600407


Sepsis Example

◎ There is wide variability in the way clinicians make decisions about sepsis 
management
○ Can RL help with this?

◎ History: may include a patient’s vital signs and laboratory tests

◎ Actions: all the treatments available to the clinician, including medications and 
interventions

◎ Rewards:  require clinician input - they should represent the achievement of 
desirable tasks, such as stabilization of vital signs or survival at the end of the stay
○ Short-term: liberation from mechanical ventilation
○ Long-term: prevention of permanent organ damage
○ https://arxiv.org/pdf/1711.09602.pdf 47

https://arxiv.org/pdf/1711.09602.pdf
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Challenges

◎ We only observe one set of actions and rewards for each patient
○ We can’t keep trying different combinations of actions to optimize a reward -

forced to use previous observational data, called “off-policy” learning

◎ We don’t observe everything going on in the body
○ We also don’t observe the values we do record (blood pressure, etc.) at every 

time step (dynamic data)

◎ It’s difficult to find a reward function
○ How do we balance short and long-term rewards?

◎ Need a ton of data, which is difficult to come by



Questions to Consider

◎ Is the AI given access to all variables that influence decision making?
○ Typically no because of confounding variables
○ Can lead to confounding in the short term and long term

◎ How big is your effective sample size?
○ Most approaches for evaluating RL policies from observational data weigh each 

patient’s history on the basis of whether the clinician decisions match the decisions of 
the policy proposed by the RL algorithm

○ The reliability (variance) of the treatment-quality estimate depends on the number of 
patient histories for which the proposed and observed treatment policies agree—a 
quantity known as the effective sample size

○ The possibilities for mismatch between the actual decision and the proposed decision 
grow with the number of decisions in the patient’s history, and thus RL evaluation is 
especially prone to having small effective sample sizes 50
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Questions to Consider

◎ Will the AI behave prospectively as intended?
○ Errors in problem formulation or data processing can lead to poor decisions

○ Simplistic reward functions may neglect long-term effects for meaningless 
gains: for example, rewarding only blood pressure targets may result in an AI 
that causes long-term harm by excessive dosing of vasopressors

○ Errors in data recording or preprocessing may introduce errors in the reward 
signal, misleading the RL algorithm

○ The learned policy may not work well at a different hospital or even in the 
same hospital a year later if treatment standards shift
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RL in Medicine

◎ RL in medicine seems promising, but 
very difficult

◎ May help guide clinicians in treatment 
decisions based on all of a patient’s 
history and not their immediate 
symptoms/responses to treatment

◎ Really nice review paper of RL in 
medicine
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https://arxiv.org/pdf/1908.08796.pdf
https://arxiv.org/pdf/1908.08796.pdf
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